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TESTS FOR STANDARDIZED GENERALIZED VARIANCES OF

MULTIVARIATE NORMAL POPULATIONS OF POSSIBLY DIFFERENT DIMENSIONS1

Ashis Sen Gupta
2

Stanford University

1. Introduction.

Let X be a p-dimensional random vector variable with dispersion

matrix E . Two well-known measures of multidimensional scatter, obtained

by generalizing the variance, the univariate measure, are E and the

generalized variance (GV), jEJ det(E), introduced by Wilks (1932,1967). For

multivariate normal populations, Likelihood Ratio Tests (LRT's) for Z's,

of course of same dimensionalities, and some optimum properties of these

tests are known. But, when multidimensional scatter of populations of

different dimensions need to be compared, these tests cannot be defined.

However, using EI4I p , which we will nomenclature as Standardized Gen-

eralized Variance (SGV), such comparisons become meaningful. Since IZI

represents the volume in p-dimensions, note that fE1 I/p becomes a mea-

sure so scaled as to become comparable with scatter for a scalar random

variable. Apart from this generality, need for tests of generalized vari-

ances has been also felt, on its own right. JEJ , being a scalar, is

more suitable and easier to work with than the matrix E . Hoel (1937) was

1
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at the Conference on Applications of Numerical Analysis and Special
Functions in Statistics, University of Maryland, October 6, 1980.



probably first to realize this need and later Eaton (1967) studied

some problems of statistical inference associated with a single GV.

Bickel (1965) and others have used "generalized variance efficiency" for

comparing various test procedures. The GV has been extensively used in

applied research, e.g., by Goodman (1966) in Agricultural Statistics,

Gnanadesikan and Gupta (1970) in Ranking and Selection, Arvanitis and

Afonja (1971) in Sample Survey, Kiefer and Studden (1976) in The Theory

of Optimal Designs, etc. While the estimation, e.g., van der Vaart (1965),
I.

Shorrock and Zidek (1976), and the distribution, e.g.,

Mathai (1972) have been studied in some detail, little seems to be

known about tests for GV's. This paper attempts to bridge that gap.
Suppose X's are independently distributed as Np ,) , E

being general dispersion matrices, i = 1,...,k . LRT's are derived for
H I/p1'i 2I/P i

H 0: il " _o2 (given) > 0, for some fixed i; 
H02 :[il /

1/pji 1/Pi

[jE , I for some fixed i and j and finally H0 3 : 1Z I all equal,

i - 1,... ,k against appropriate two-sided alternatives. The test cri-

teria turn out to be quite elegant multivariate analogues to those in

the univariate cases.

The solutions to the distributional problems associated with the

various test statistics considered above need extensive use of Special

Functions. The exact distributions for both the null and nonnull cases

are presented for most of the above test criteria. The percentage points

of these distributions can be obtained from existing mathematical tables

since the distributions are represented in suitable computable forms.

Examples of construction of tables and the general procedure of obtain-

Ing them for such computable forms of the distributions exist in current
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literature, e.g., Mathai and Katiyar (1979). Further, many of the existing tables

can also be exploited to give the percentage points. Large sample approxi-

mations to the above distributions are also presented.

Finally, considering general Ei 's of equal dimensions, for H01

and H0 2 , it is shown that the "modified" LRT's are unbiased--a result

parallel to Sugiura and Nagao (1968) on tests of covariance matrices.

2. Applications.

In addition to the mathematically interesting nature of the problem

and the applications cited above, there lies a rich, fertile area for

numerous applications of the SGV's. In fact, wherever variance is

employed for univariate situations, SGV's seem to be applicable for the multi-

variate situations of 'overall' variability. Sone examples are cited below.

(a) Multivariate Quality Control. It is well known [e.g., see

Steyn (1978)] that testing HO: the population mean vector Ur of

X , X - Np (prE), remains constant during the sampling process against

the alternative that pr varies during the process, is equivalent to

testing Ho: GV = EJ against H1 : GV = 1Z*j , where E* = (l+2D/n)E,

D = pr ir , n being the sample size. One of the many applications
r=l r -r

of this result and, hence, test for SGV can be seen in multivariate quality

control.

(b) Generalized Canonical Variable(GCV) Analysis. When the p-corponent

original vector can be divided into k > 2 mutually exclusive groups,

Anderson (1958), Problem 5, pp. 305-306, proposed GCV's to be obtained by

minimizing their GV. Steel (1951) and Kettenring (1971)(as in his Ph.D. thesis)
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have attempted to construct such GCV's. Sen Gupta (1980a) constructed

GCV's which are equicorrelated and formulated and studied some inference

problems associated with such GCV's. However, no results on statistical

inference associated with the GCV's obtained by Anderson-Kettenring-

Steel's motbo are available. If the original vector can be meaning-

fully subgrouped into k I < < ... < ks groups, then one is faced with

the problem of choosing between canonical variables with dimensions

ki, i - 1,...,s . For the k i-th subgrouping, the original vector is

isplit into k. mutually exclusive an~iexhaustive classes, the j-th

class consisting of p. elements, p. = p, i = 1, ...,s . Obviously,

i ~ j=lI

since the criterion of minimum GV is being used to represent the original

vector by a smaller dimensional one, a GCV with the smallest dimension

kI , will be preferred provided they all have the same comparable GV's,

i.e., the same SGV's. Also, it may be meaningful to represent the ori-

ginal vector by different GCV's of the same dimensions, k , but whose

components are derived from different subgroupings of the original vector.

Gnanadesikan (1977), pp. 74-77, drawing from a well-known example in

psychometry, considers three (=k) sets of scores by several people on

three batteries of three tests each, i.e., P1 = P2 = P3 = 3 . The three tests

in each battery were intended to measure, respectively, the verbal, the

numerical, and the spatial abilities of the persons tested. He commented,

"An interesting alternative analysis in this example (...) would be to

regroup the nine variables into three sets corresponding to the three

abilities measured rather than the three batteries of tests." If the prob-

lem is considered in the more general set-up that the observed values
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merely constitute a sample from the underlying population, then how

profitable the suggested alternative analysis will be must be judged

through related statistical tests of significance. Furthermore, similar

problems for a combination of the cases considered above, i.e., where

one is faced with the problem of comparing several GCV's, some of which

may possibly differ in dimensions, are quite important from practical

considerations. Such statistical problems as comparing GCV's of possibly

different dimensions obtained by Anderson-Kettenring-Steel's method can

thus be formulated as tests for SGV's.

(c) Generalized Homogeneity of Multidimensional Scatter. Dyer and

Keating (1980) were interested in the homogeneity of variances of sealed

bids of five Texas offshore oil and gas leases. The variances were com-

puted from the biddings of the oil companies, whose numbers and identities

varied from lease to lease. In similar situations, if repeated observa-

tions are available for the leases or if the variabilities (for the

bidding patterns) for certain companies for repeated bids over possibly

different numbers of leases need to be compared, then one is faced with

the problem of testing homogeneity of "variances," which we will term

"Generalized Homogeneity" for vector variables of possibly different

dimensions. This will be equivalent to testing homogeneity of SGV's,

which is precisely H0 3 defined above.

(d) Missing Observations on a Random Vector. In cases of missing

observations on part of a random vector [Dahiya and Korwar (1980), Goodman

(1968)], generalized homogeneity as considered above can be quite useful

for comparing multidimensional scatter. Suppose for an agricultural product

P, there are q important characteristics with regard to variability.
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Let the complete observation vector be X = (X" ' i: qi x 1,

r
1 1,...,r, qiq. Let observations be available from population

1

j on only tj < r of the Xi's, say, with no loss of generality, on

X (X1,. ..,Xt), j - 1,...,k. Since usually for an agricultural
j j

product P, the overall variability of the product can be represented

in terms of the volume, one can use GV as a measure of this overall

variability. In dealing with populations of maize and cotton, this

notion was reflected by Goodman in his concluding remark: "The six

cotton populations indicate even more clearly that the generalized

variance is a useful measure of overall variability that merits futher

investigation." Let it be desired to compare the multidimensional

scatter of P over the k populations. Due to missing observations

one possibility is to consider the random vector, say Xu, u = Min t.
j

for which observations are available from all the populations and

compare the GV's of X . This was the approach of Goodman's analysis

where "Only plants for which complete data were available were used for

these analyses." This approach however results in loss of data. The

other and better alternative, in case the missing observations are in

the format described above would be to compare the SGVs of the X

(If measurements on the components are in different units, we can consider

the standardized scatter coefficient, where scatter coefficient, defined

by Frisch (1929), is the determinant of the correlation matrix]. This

seems reasonable since more characteristics related to the variability

of P is considered through X '*s.

(e) Ranking and Selection. The method of ranking and selection

based on GVs as proposed by Gnanadesikan and Gupta (1970) for
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equi-dimensional vector variables has a natural extension to an initial

test for SGVs for vector variables differing in dimension followed by

ranking and selection procedures based on the SGVs.

(f) Cluster Analysis. Often in cluster analysis, after the clusters

are identified the question of homogeneity of clusters is of vital impor-

tance, as in Mezzich and Solomon (1980). Tests for SGVs can be exploited

advantageously for such circumstances.

3. Likelihood Ratio Tests for SGV's.

Let X % N (p,E). Throughout our discussion, unless otherwise statedp

we will assume E to be non-singular. Denote the population SGV of

X, 17I p  by A2 and that of the sample, IS/Nj1I p  by d2  where S

is the sample sums of products matrix based on a sample of size N. Also

denote ISl1'P by s2. [Note that, Anderson (1958) defines GV with the

divisor N-1 instead of N].

3.i. Test for a Specified Value of SGV. Let xl,...,xN be a random

sample from N (iz,E) and suppose we want to test H0 . a2 (specified)

against H1: A2 0 0  (Note that H0  is equivalent to the hypothesis

that the GV, IE[ , has the specified value a2P)t
0 Since the HO0 does not con-

strain V, we have Xi x. To find the MLE of Z under Hog consider

( N n n e , + 1 ( n sa p  - £n 0 1 n a 0

where C - ( 2 H)-Np/2IsI-N/2, X is the Lagrange undetermined multiplier,

ei, i - 1, ... , p are the characteristic roots of E- S

and we have used the fact that Z / p  2 is equivalent to

n 2p  2p n8 n 2p
Ins In M .Ln a 0 , 2 P Is. Differentiating 0 w.r.t. i

i-1 j~

and equating to zero, we have N - - il, i - ,...,p. So,
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- 82p.I2p . e a 2 2

Hence,

ClaN/2 =2p. 2p

L/L- CaN/2 exp(-p/2 a
l /p ) - f(a), say, where C1  (e/N) ip/2 andas / 0

However,

f(a) t a < N
p  and a > N

p

So, we get,

2 22 2

Result 1. The LRT for HO: a against H 2 2

equivalently given by,

Reject H0 iff d
2P/o2p >a or < a. V

where a0 and a are constants to be determined from the specified level of

the test.

3.2. Test for the Equality of the SGVs of Two Independent Multi-

variate Normal Populations. Let xu, u - 1,...,N 1 and yv' v = 1, ...,N2

denote two independent random samples from Np(IJi, ), i - 1,2 respec-
2 2 2

tively. We are interested in testing H0 : A1 = A2 against HI A 1 A
2 1121 2'2

where A1, i - 1,2 are the population SGVs of X and Y respectively.

As in Section 3.1, PIl - X, ji2 - y" Let G1, i - 1,...,p, and nV

J - 1,...,p 2  be the characteristic roots of Z s1  and 2 1S2 respec-

tively where Si, i - 1,2 are the sample sums of products matrices for

X and Y respectively. For finding the MLEs of Eis under H0 , consider

as before,
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.. . .. .. + p N, ... .. P ( i T. . 2pl Z . . .. 0,1

pill ~1+ p~N iii 2
i= 2 J 1 p

P2 2

where C is a constant, X is the Lagrange undetermined multiplier,
2p I/P 1  I/P2,,

SI S = sl, i - 1,2 and we have used the fact that IZ 1 IE21

is equivalent to the quantity within the third bracket on the right-hand

side of (3.1) being zero.

Differentiating w.r.t. 0 s and njs and equating these to zeros,

we have

p N 1  -A p01  i 1, . l plN 1  A = p1 [ 2Pl 2Pll 
/ p l

and

p N N +X -P 2p2/ Yp 1 l(p 2

P 2 N2 + X = P 2 lj , j1 P,...,P2  P2 N2 + A P 2 (S2 / 0 J

Te g 2 2 2 2
These give c2 % (pls2 + P2 S2 )/(plN1 + P2 N2 ) - (plNl d1  + P2 N2 d2 )/(plNl+P 2 N2)

2
where di , i = 1,2 are the sample generalized variances for

2 .2 .2
X and Y respectively and AI 1 A2 - 0, the common unknown value. Note

that a2, the MLE of 00 agrees with that in the case of P P2  .

Also a rand a2p2 give the lfLEs of llI and the generalized

variances of X and Y respectively. Using these estimates, the Likelihood

Ratio criterion is given by,
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(3.2.1) fL {(s) 1 p/ 2 (s 2 } 2) a N 0 + ))/

C. 2p/ (p 1a+P2 ) (N 1 p1+N 2 p 2/2

f(a), say, where a = s 2Is 2and C is a constant.
1 2

However, f(a) + a > N 2 adt0<a<0N 2p 2fNl1  Thus

Result 2. The LRT for H A2=A2against H A 2 A2 can be0 1 2 i 1 2

equivalently given by,

Reject H0  iff R d 2/d 2< r or> r01 2 1 2

where r 1  and r 2  are constants to be determined from the specified

level of the test.

3.3. Test for the Equality of SGVs of k(> 2) Independent Multi-

variate Normal Populations. Let x ip, 9, = l,...,N., i = 1,...,k denote

k random samples from k independent populations N Pi(ii9 ), i -1,... ,k

respectively. We are interested in testing H 0: A2 i 1,.,

all equal, against the alternative H1, that at least one of them differ.

As before, under both H 0and Hi ~ i ,., e

i - 1,. ..,k, j - I,...,p~ be the characteristic roots of Z-1 S

respectively where Si, i -1,.. .,k are the sample sums of products

matrices for X, i - 1,...,k respectively. For finding the M'LEs of

i 1 ,...,k ,under H0 9 consider as before,

10



(3.3.1)

C k i 1 
il l - 2 ijj

k A Z in - in s r i
+ 2 ii+l Pi in - - ne 2n i+

where C is a constant and X 1+1 are undetermined Lagrange multipliers

with k+l being replaced by 1 in the suffixes. Differentiating 4

with respect to 6 s and equating to zeros we have,

PiNi+ (Ail-ili) Pijij ; ifl,...,k, l p ' 01 = Akl

2.^2

Oij eij ,  ij =f s i , i =^ 0, ...,k ,

"2 2 2
where a0  is the MLE of 0 the common unknown value of Ai  i

So

"2 ^2 2
r0 PiNi + a 0 [ (Xii+l- i-l) =EPiSi

A2 2
a a0  E Pis i/E p

2Note again this agrees with the MLE for a of the univariate case.
!0

Hence, we get,

2

Result 3. The LRT for H0: A, . all equal, against H at least

2
one of the Ai , i 1,...,k , differ is given by

k 2 ̂ 2 Nipi/2

Reject H0  if and only if, n- 11 (di/a0)  < ?Oi-

11



where 0 is a constant to be determined from the specified level of

the test.

4. Exact Null and Non-Null Distributions of the Test Criteria.

4.1.1. Definitions and Decisions. In order to obtain the exact

distributions under null and alternative hypotheses, for the test

statistics considered in Section 3, we recall the following definitions

and preliminary discussions from Mathai [(1970), (1972), (1973)].

Meijer's G-Function. The G-function is defined as,

(4.1.i) Gm~np~ rzal,... .,ap -

(4.1.1) G zJ = (2 iri) h(s) zs ds

1/2
where i- (-1) , z is not equal to zero and

z expfs (Cnizi + i arg z)}

in which £n IzI denotes the natural logarithm of jzj and arg z is

not necessarily the principal value, and

n m q p
h(s) - nl r(i-a -s) IT F(b H rs)/ l( I(1-b. -s) Hr (a +s))

j-Ml j =l1 j+s/ j-m+l j-n+l

where m, n, p, q are integers such that, 0 < n < p ,1< m <q

a( Q - , .... ,p) , b j - ,. q)

are complex numbers such that

12



(bh + v) 0 (a j-l-r) , for v, r , 0,1,...,

L is a contour in the complex s-plane such that the points,

(4.1.2) -s = (b +v) , j - l,...,m ; v = 0,1,...

and

-s (a -- v) , j = 1,...,n ; v 0,1,...

are separated and the points in (4.1.2) are enclosed by L . An empty

product is interpreted as unity. The function (4.1.1) makes sense in

the following cases

For every z 0 0 if q - p is positive and for 0 < IzI < 1

if q - p - 0 . The existence of different contours L is discussed

in Erdelyi (1953, p. 207).

The Gauss-Legendre Multiplication Formula.

( 4 .1 3 ) r m z)( 1 l 0 m / 2 m mz - l1 m - i1

(4.1.3) r(mz) /2 f P(z+j/m) , m = 1,2,...
J.0

This formula (4.1.3) enables one to write a Gamma of an integral

multiple of z in terms of Gamma of z.

The technique of inverse Mellin transform can be advantageously

employed when a moment sequence uniquely determines a distribution.

13



Rao (1973, p.106) has given a number of sufficient conditions for the

unique existence of the density function. If p s-I I = 0,1,...

is the (s-l)th moment about the origin of T, uniquely determining

its density, then the density g(t) of T is given by the inverse

Mellin transform

(4.1.4) g(t) = (2Tri) -  { s-i t - ds
1C+iO i

where i = V1 and C is a suitably chosen real number. For multi-

variate normal populations it is seen that at least one of the condi-

tions cited in Rao is satisfied by the moment sequence.

A computable representation of the G-function of (4.1.1) using the

Calculus of Residues is given by,

I a1,...,al n t r

(4.1.5) Gm I I A Rp qI j j+I I I Ryv
Pq b1 ,...,bq k=l j=l r=1 J=l v=l i 0

where Akj is given in (5.21) and Rvi is given in (5.27) of Mathai

(1970, p. 141).

Pincherle's H-Function. The G-function is a special case of the

most general Special Function, namely the H-function. Braaksma (1964)

has discussed the H-function in detail. Following Mathai, slight modi-

fications of the original definition are made here in order to represent

it as an inverse Mellin transform. We define the H-function as follows.
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(at ...........

(4.1.6) HWz - mn [-a~cI )..( ,
pq (bl,81) (bq $)J

m n

1 r r(b + $j ) 11 r(1-a - a a)OF z ' IL n- j' j1 p z -8ds
2Tiq p

i r(-b -0 a) n r(a +a a)
J-m+1 J-n+l

where i - ILT , p, q, m, n are integers such that I < m < q, 0 < n < p

aj - 1,...,p) , (j 1,...,q) are positive numbers and

aj ( l,...,p) , bj Q 1,...,q) are complex numbers such that,

aj(bn+v) h(aj-l-) ,for v, X= 0,1,...,; h - 1,...,m ; j n

L is a contour separating the points,

(4.1.7) -s - (b +v)/% V j -1,...,m; V O 0,1,...

and

(4.1.8) -s - (a -- v)/ , 1,...,n ; v - 0,1,...

One condition of existence of the H-function is that it exists, for

every z 0 0 if u > 0, where

-11

and for 0 < IzI < -  , if p - 0 where

15



i j q

The result due to Braaksma (p. 278, (6.1)] which effectively

says that H(z) is available as the sum of the residues of h(s)

-S in the points (4.1.7) is not affected by the modification mentioned

earlier of the original definition of the H-function. A computable

representation of the H-function, with the detailed method of identify-

ing the poles is given in Mathai (1973) as follows.

I m

(4.1.9) H(z)-- R.
j=l

where the second sum is over S j. defined in (4.10) and R. is

defined in (4.22) of Mathai (1973).

Exact Distribution of d2P/ 2p . Since the sample generalized42p

variance d , arise frequently in many multivariate tests, various

authors, e.g. Mathai (1970), Consul (1964), have worked

on its distribution. Mathai's work seems to be quite suitable in view

of the distribution that will be needed for Section 4.3. Letting

v= d 2P/o 2 P and using (4.1.4), the density of v, g(v), under
0

H0 , can be written as

g(v) - C(21i) -l JL nr[(N-I)/2+h]v-Sdsg~v-C( i) I L Jffil

(4.2.1) = C O'0p(vI(N-J)/2 , J 1,2....,p) , 0 < v
0,p

where C - r[(N-J)12]

16



A computable representation of gl(v) is then obtained by substituting

m - p , n = 0 , p - 0 , q - p in (4.1.5)

Explicit evaluations for the residues needed in (4.1.5) are given

in Mathai (1972). For this,Mathai considered a random variable with its

h-th moment given by,

(4.2.2) E(Xh) r(m-i)/2+hj F[(n-i)/2-hl
i=l F[(n-i)12] i=l F[(m-i)/2]

Assume the moment sequence in (4.2.2) uniquely determines the density of

X. Then, through the use of Calculus of Residues he obtained the

following

Theorem MI. The density function f(x) corresponding to the moment

sequence in (4.2.2) is as follows.

f(x) = C(oax/B) l-pl/x - 1"  I (R +R') , x > 0w@

j=l i J

aj l (a -1 a -l-r

R t [a -1)!]-l(ax/ )J Y J )(-log ax/$)
r=0

r-i (r-l-r r l1 r-l1 (rl-l-r 2 )
xf I ( - ) x A 7 I )A 1 B

rI=O 1 r 2 0 r2

Ri is Rj with (ax/ ) aj At) , B are replaced by (x/8) - l/2,

b , A'(t) and B' respectively. The various quantities for the two

cases p-even and p-odd are given in pp. 166-167 of Hathai (1972).

For v , the moment sequence given in (4.2.2) determines the

density uniquely according to Rao (1973, p. 106). Letting p' - 0

17



a -1, I 5 2p  and m = n , the density of v is deduced in

a form suitable for computation. Using the specified values for 1EI

under the null ( = 
2P) and alternative hypotheses, the corresponding

distributions of v are obtained.

4.3. Exact Distribution of R. Because of its frequent applications

in various multivariate test procedures, distribution of the ratio of

two independent sample GVs have received much attention, e.g. Nandi

(1977), Tretter and Walster (1975), Mathai (1972) etc.

Case 1. p1 
= p 2. The test statistic R will be equivalent to the

test statistic based on the ratio of two independent GVs, say, w, only

when p1 = P2 = p, say. In that case, the density of w =R p  is

2 2obtained from Theorem Ml above by letting a = 2/a1 and = 1

Under H0  a/S = 1 . Under any alternative H: A2 /A2 2 the

distribution of R is obtained by substituting a/S = A2/A2 = 1/62

in Theorem Ml.

Case 2. p1 # P2. In the case of unequal dimensions, the distribution

of R is not available. We obtain the distribution in terms of the

H-function and present it in a computable form through the use of Calculus

of Residues. Now,

hh P 1 P2 1 h(4.3.1) E(R) C (A/A2) H r-(N {(N -2h
1 2 1 p1  2 2 P2

where

k P2
C - [H rf(N 1 -i)/2} R r{(N 2 -i)/2}]

1 1
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Hence from (4.1.4), on using (4.1.6), the density of R, g2 (r), under

H0 , can be written as

(4.3.2) g2 (r) = (2ri)-i E(R h) r-h dh

= . HPI'P2  i (al'pl),...,(ap2,Pl < r <P2 Pl (blp2),. .,(bplP2)J

Since here the c.s and the 5.s in (4.1.6) corresponding to (4.3.1)

are all rational numbers, we can use (4.1.3) to express g2 (r) in terms

of G-function also. However, use of H-function here is a more direct

and convenient approach.

In order to present (4.3.2) in a computable form we introduce the

following notation. Consider (4.1.6). The poles of r(b +$ s) are

given by the equation

(4.3.3) -s - (b +v)/$j , 0,1.

If the point -s = (b +V for some V = V1 c {O,i.... coincides

with the poles coming from y-l other Gammas of the set r(b +1 s),

j - 1,...,m then the point gives a pole of order y . In order to

distinguish poles of all orders, for a fixed j , consider the equations

b +V(Ql) b +Q2) +V(Jm)
1 J1 ...Jm 2 l ... Jm m+Jl...Jm

(4.3.4) 81 82 8m
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We interpret (4.3.4) as follows. For a fixed j , j 0 or 1 forr

r = 1,...,m . If j = 0 , then (b +V(r) M. is to be excluded
r r J, .. j m r

from (4.3.4) V(J) is a value of v in (4.3.3). For every fixedJl'" *"jM

J ' Ji +'''+ Jm c {l,...,m} denotes the order of the pole at

-s - (b )j ( . . To avoid duplication we will use the convention,
i 1l* . m j*

while considering the points corresponding to (4.3.3), that

=j =j.= =0
Jl 2 j-1

Denote by S the set of all values v takes for given

(ij) (Oi)
J'J2 j .... Jm i.e. S = {v.'J . Then

m
(4.3.5) H(z) = L jj) .

where R is the residue of h(s)z at the pole- s=(b + v'

a-'i denotes the summation over all nets S(. -otes

the summation over all sets S J) . More detailed discussions can be

found in Mathai (1973).

We now determine the poles and their corresponding orders needed

in (4.3.5), i.e. only the first product of gammas in (4.3.1). It will

thus be convenient, for computational purposes, to choose p1 < P2.

For a fixed i the poles of r[--y + = are given by the' Pl

equation

-s pl (N1-i)/2+v} , - 0,1,2,...
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Note that poles of r and r coincide only when i and j are both

even or both odd.

Lemma 4.3.1. The poles, with their corresponding orders, are given by

Case A. p1 odd.

N -1
(11) 1(4.3.6) tv1010.101 1 {0,1,2,...} = MVI Poles are p (-2-+v)

Pl+1

repeated 2i + times 2!

N.
{Vo.0 1 (01 . Pole is pl -

00. 0101.. 1012

J-i

repeated Plj* J-1 times, j =3,5, ".Pl

(22) N 1-2
011..00 {0,1,2,...} {V1. Poles arep +V)

repeated times

2

02... 010.010 {01}. Pole is p -- +2

P 1 - 1

repeated - times -
2 21

Case B. p1 even.

(1) ,N N-1
(4.3.0)0..010 - {0,,2 ... v. Poles arep1
1010..l

J-ii

repeated - times
2
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0V( J ) N 1-j ,
..00.i = {v}. Pole is pl--

repeated - 2 times, j - " P-
N -2

(22) . {0,1,2,..} v) . Poles are pl(--+v)
0101.. 01

repeated __ times
2

N -j
NO...I1 = fO}. Pole is pl- 1

repeated -- 2 times, j "

For i ' j , {v ()} is vacuous unless i and j are both odd or

both even. (We omit the subscripts of V(ij) since it is clear what they

are.)

(10. 9.-1
(4.3.8) {v I = (V + -} , V - 0,1,2,...;k > 1 is odd • Poles are

identified with those of v(11)

(2t.) 922(V 2V + &} , = 0,1,2,...;. > 2 is even. Poles are

identified with those of v(22)

v' , 9. > V > 2 ; '9 both odd or both even.2

Poles are identified with those of V

Proof. The above results follow from the following observations.

Consider Case A. Let i - 1 and J -- p1  be any odd number. Then,

poles of r and r coincide, as

N 1-1 N 1-j il
p + v). p- - + X)' (v,Xk) (0, 2 i ),.2 .
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But this set excludes the poles coming from ( f0,1,..., l } =E.
2 j

COnsider j,j' both odd, 3 < j < J' < 1 p Then

N1 -j N I-j'
(4.3.9) plt- - + )= +l(--p -2 +A'). For A I i+ '-

Thus considering the 'excluded sets' E s we note that the smallest

element, i.e. 0 , is repeated in all succeeding E., through the

relation (4.3.9). This establishes (4.3.6). A similar argument holds

for (4.3.7). (4.3.8) follows from the definitions of the corresponding

sets.

Theorem 4.3.1. The probability density function of R is given by

for p1  odd,

nl-

r / p( 2  + v) (p1-1)/2-1

2 Cr) = c [ (r/( 2 ) f(r/62 u,aI,A0 ,B 0 )
2 2 1

j u=0

N I-2oPlc (1 (P1 -1)/2-1

+ . (r/6 2 ) f(r/62 ; U,b 1 ,Ao,B O)

V,0 u=0

p** Pl(N_-j)/2 P-1 4 -2 -1

+ (r/62) 2 f(r/ 2 u,bjAOB 0 )
J u=0
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and for p1  even

N1-1 P
(r) = C 2  f(r/6 2 ;ua'.A0.B

Pl(N -j)/2 -- i - I - i2 
2+ C f(r/6 ; u a 1'A0.B)

[vj u=O

NI-2 j-2

pI(N-j)/2 1 . .L1

+ .*(r/S 2 )  2 f(r/6 2 ; u.a'$A 0 .B0
vj u=O

where

f(r:udA 0,B0) (u-1)! 1 u u(-log r) [ )A

02- IY=

x Y.L - I A(Y 1--Y 2) B
Y. 0 0l

u 0 Pl

B0 % (s-d) 1 P{l(N + 2 h- i) at s - d

where d is a pole of order uo. (the upper

limit +1, for u in the summation in the

theorem) of the product of the gamma functions

defined by B0 ,

4+1 log B0 P t > 0
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C is the constant defined in (4.3.1) and 62 AI/A2  and E

denote the summations over all j C (3,5,...,p I } and j e {4,6,o..,pi*

respectively, P1 = P1  if p1  is odd and p f pl- I  if p1  is even;

P1 = Pl if p1  is even and Pl-i if p1  is odd.

Proof. The proof follows by noting (4.3.5) and combining Lenna 4.3.1

above with Lemma 1 of Mathai (1973).

Finally, a convenient computational form of the p.d.f. of R is

obtained from the following theorem proved as Theorem I in Mathai (1973).

Theorem M2. H(z) is given in (4.3.5) where,

(b +vj) M'

(4.3.10) R. = .+' j) z ° Vl'" mJ+'.'+j-l [l ' '+im 1l
(il+ ...+Jm) :  r

jl+-...jm-1-r [r-i rr-i1 (r-l-r )x (-log z) C

rl=0 r I

1 L1
x rl-i1 rl-l1 C(rl-l-r 2) ] .. D

r Z = 0  r2 i D

where the C s and D s are defined in (4.23) and (4.24) of Mathai (1973).

We note that the sets {f(ih) } are not needed for h < j inJ,' ..Jm

(4.23) and (4.24) of Mathai. Thus, Lemma 4.3.1 gives us all the desired

sets needed to use Theorem M2 above, which expresses H(z) in terms of

the convenient computable functions, e.g. the Psi and the generalized

zeta functions. Examples of computation of H(z) is given in Section 5

of Mathai (1973). Also computational procedure and computer programs

for calculating the percentage points of the distribution of R can be
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obtained in a manner similar to Mathai and Katiyar (1979). The null

distribution is obtained by putting 62 2 = 1 in (4.3.1) and the
1 2

nonnull distribution by substituting the specified value, under the given

alternative, 62 A 2/A2 in (4.3.1). It is known that for pi 1 1 or 2
22A 2 2

X P M Pnj u2 2 where nj N -l and n. u. = N d 2 j = 1,2 is
ii J J i i2

distributed as a x with d.f. p (n -p.+l) Hence if pi = 1 or 2

p1  not necessarily equal to p2 , the exact distribution of R , under

both the null and alternative hypotheses are obtained as central F

distributions, with obvious multipliers, having d.f. given by

= Pi(ni-pi+l) , i = 1,2

4.4. Exact Distribution of n . We consider a Bartlett type modi-
2 2 n i  1ad 2

fication for n . Let X = Pin ui/Ao where ni N 1 and n u
iii1 i i

2
= N d i = 1,...,k . As in the univariate case, we propose the

i i'

modified test statistic

2 k 2 n ip i/zV i / k 2 k )
(4.4.1) B u n i Pi ui n, Pi

= C-1 NX bi/ YXi

where

bib i -(ni /n~), -b "Tbi

For p, 1 or 2, Xi  X 2 (n_+l) . Using this result and the

representation (4.4.1) we get
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Theorem 4.4.1. For pi = 1 or 2 , pi not necessarily equal to

Pi I ijj,i,j - 1,...,k the exact density of n2 is given by

f(t) = r [(m)/I PT (maj] ('1 b.J)( b7)Li Ii )

0 < t < 1

where,
k

m = pi (ni-pi+1)/2, a P (nj-p+l)/2m, j=l,...,k.
i=1 J .

b. , J=l,... ,k are defined in (4.4. )

and n is defined in Theorem 2 of Ghao and Glaser (1978).m, a, b

Percentage points and approximations to the above distribution are

obtained from Dyer and Keating (1980). For p, ? 3, the distributions of

2 22 or n seem to be complicated.

B

5. Large Sample Approximations. Some large sample approximations to

the exact distributions of the test criteria considered above are now sug-

gested. Existing approximations are also reviewed for the distribution of

GV and SGV.

2 2
5.1 Asymptotic Distributions of GV and SGV. Letting nu = Nd

n = N -1, we have from Anderson (1958), Theorem 7.5.4, that for

large N,

2/2p L
v (u2/A p -1) - N(0,2p).

p
It is know that n = Npv = JSJ/IEJ is distributed as il2

1-1 N-i,

where the X 2's are all independent. Hoel (1937) suggested approximating
i/p

the distribution of n - w by the distribution with the density function
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1 1

g(w) C C p(Np) . p(Np) - 1 e

r[1/2p(N-p)]

where, 1/p

C E C(p,N) = P [ 1 - (p-)(p-2)

This turns out to be exact for p=l and p=2.

Gnanadesikan and Gupta (1970) have suggested approximating the distri-

butionof in ln=- in x , using the central limit Theorem, by
p P

the normal distribution.

We now propose a new approximation to the distribution of SGV. An ap-

plication of the general result of Madansky and Olkin (1969) with
I/p

h(v) =)vj shows that, for large N,

2 2 1 L

V'R(d /A 1) N(0,2/p).

In the light of this approximation to the distribution of the SGV, it

is interesting to note the approximation to the distribution of GV by Anderson

stated at the beginning. Little is known about the relative performances

of the four approximations discussed above.

5.2 Asymptotic Distributions of R and n. Letting ci = C(Nipi) of

Hoel's approximation, for large N1 and N2, the density of R can be ap-

proximated by that of,

C N p (N -p ) 2221 1i 1 62F

C1N1 P2 (N2-p2 ) P1 (N1 -P1 ),P2 (N2-P2 ),
whr 2 =2 2

where 62= A1/A2  The null and non-null distributions are obtained
2

by putting 6-1 and the specified value under the alternative hypothesis,

respectively.
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In addition to the usual X approximation to the likelihood ratio

2
criterion n , another approximation is presented here. If Ni is large com-

2
pared to pi, i=l,...,k then in the same lines of Hoel's approximation, we get

2 2 2
Xi  Piniui/A°  can be approximated by a X variable with d.f. pi(Ni-pi)

i=l,...,k. Hence,

2Lemma 5.2.1. If N Iis large compared to p I, i=l,..,k, then the density

of n under Ho can be approximated by f(t) defined in Theorem 4.4.1 (where
B

pis now can be any integers, not necessarily is or 2s only).

2
Similar result is seen to hold for n also. These approximations are

26. A Multivariate F Criterion A simpler statistic than i2 is nowmax

suggested for the special case when we have an equal number of observations,

N, from k populations, each of equal dimension p, e.g.,

F = d2  /d 2
p,max max min

For p=l, this coincides with the F proposed by Hartley (1950) as a
max

2
short cut method for the univariate case. It is known thatln x ,for large v,

is approximately normal with variance =2/(v-1). Hence,ln d2 is approximately
p

normal, for large N, with variance 2 Thus the approximate-2 1 N-J-ip2 j=l

percentage points of F can be determined from
ma~x

1 p  1/2
F (a) - exp [r (a) - { 2/(N-J-I)} I
p,max k p1

where rk(a) is the lOOa% point of the range r, in independent normal

samples of size k. Tabulated values of rk(a) are available from Pearson

and Hartley (1966).

7. Example. The following example is taken from Gnanadesikan and

Gupta (1970) who were interested in a ranking and selection procedure i
29



based on generalized variance. They considered 5(=p) - diminesional sum-

maries of speech spectrographic data from a talker identification problem.

The data consisted of 7(=N) replicate utterances of 10(=k) words for one

particular speaker. Then,
1/5

F = (720616.4465/1.5411) = 13.6137
p,max

and F (.01) = 9.0737
p ,max

Hence, the hypothesis of equal multidimensional scatter, as measured

by SGV, is to be rejected.

8. Unbiasedness of the modified LRT's for H0 and H02

The results in this section show that tests for SGV's possess the

property of unbiasedness as do the corresponding tests for covariance

matrices. We will consider the modified LRT's obtained by replacing the

sample size N. by the degrees of freedom n. = N. - 1 in the original1 3. 1

LRT, and unbiasedness of these tests for H01 and for H02 in the case

of equidimensional vector variables will be established. The proofs for

the covariance matrices were given by Sugiura and Nagao (1968).

8.1. Unbiasedness of modified LRT for IZII/p = a 2

Theorem 8.1.1. For testing H0 flz i = p against the alternative

HII:IEI # 2p  for unknown p , the modified LRT given by replacing N

by n = N - 1 in the original LRT is unbiased.

Proof: For given a0 > 0 , let 0 ={Z: IZI = E p.d.}

S1 . {E: H 0 a0, Tp.d.}.

Then

0

To prove Th. 8.1.1 , it is then enough to show that for any E E o say

E0 k 0  and for any Z E Zi , say E1 E 1

30



(8.1.1) P(WIH0 ,) - P(WIHill E1 ) < 0

where W is the critical region of the modified LRT, i.e.,

(8.1.2) W:s/S is p.d. and (,j 2pi/p]n/2 exp{p/2 pISI /P

< c;]

is ~~-Np/2ex§ t1Sl }

(8.1.3) w:I spd. and [-ls(N-1)/2 ep -I-S1/

< c , V 0  E 0 i.e., I ol 2p

This is so because if (8.1.1)is true for any arbitrary (Z0 ,Ez) E (0,i),

then it is also true for any arbitrary (E0,E*) k: (0,) or (Z.,)

E (&0,6i) and, hence, this will imply P(w3/H01) - P(Wt,H 1 1) < 0

Let gt0(p), the multiplication group of pxp orthogonal matrices, be such

that g E l 2 E 1 i/2 g' is a diagonal matrix F where E0./2 = (l/2) -

112 1/2 0 Without any loss of generality we can assume that
0 0

0= I and Z = r , the diagonal matrix where diagonal elements are the
0 1

characteristic roots of E 0/2 12 E 0 Hence under HillS has a Wishart

distribution with parameters r and n = N - I . Now

P(IHII) = c IsI(N-p-12 )/ 2
1 r - (N- l)/ 2 exp{- - tr F-iSjdS

Wo n p2

f jc 5~ IUI ( N - p - 2 ) / 2 exp- g- tr U)dUW1 n~p2

where

-i .p(p-l)/4 2np/2 
p 2((n-i+1)/2)

n, p i-l

U - -1/2 Sr -1/2

and

W' { U: U p.d., r 1/2 Url/2 t W)
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Also

12U 1r 1 -(P+1)/2

Since w' -W when H is true and in the region W letting
01

Gii-1,.. .,p be the characteristic root of U,

f(U) =u u(N-P2)/2 exp(- -! tr U) - UI(N-p2)/2 exp(-

<~ C'uK (P+l) /2(eJ Np/2 exp [ e R{ i 1~~/~

< clulN/ -(p+l)/2 -g(U)

we get

IuI(N-p 2) expi- -! tr U}dU

exists and

f g(U)dU <

Further,

f-n fCU)dU < fW-wnIW gCU)dU

and

- *~ f(U)dU < - g(U)dU

Thus, we get

P(w1H0.1,10) P(wjH illE 1)

- cqpfw-nw - Jw*-wn* f(U)dU}

< C I(j)Np/2{f juCJL.* f* 0 }IrP /dU
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The last inequality is due to the fact that IUI - ( p + I ) / 2  is the invariant

measure in the space of U under the full linear group G (p) transform-

ing U - gUg' , g E G2t(p) , that is,

I IUl-(P+I)/2 dU = - f IuI-(P+l)/2 dU . Q.E.D.

Precisely this property was exploited by Sugiura and Nagao to prove the

unbiasedness of the modified LRT's for E -- E 0 and E1 -- E 2 .

Theorem 8.1.1 can be generalized to the k-sample case. Let xji: pxl ,

.... , (N >p) be a random sample from N p(p,Z ), j=1,2,...,k . Let

Si be the sample sums of products matrix and n.= N. -1 . Using the same

argument as in the proof of Theorem 6.1.1 we have the following theorem.

Theorem 8.1.2. For testing the hypothesis H' .I 1'l/ = 2

01' j, Oj

(j=1,2,.. .,k) against the alternatives H, 1 for some i
2

where the mean V. is unspecified and 0 2 > 0 is given, the modified LRT

having the critical region

I: SI '.... ,Sk)/s j  is p.d. (j-1,...k)

and

k -Njp/2 n /2 Rs I

is unbiased.
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Consider further the problem of testing H"0 1  against

H"IZIz I where 0 < < CF " As a modification of the LRT in

Section 3.1 consider the test 09

"~~ ~ if S p 
> c

0: Reject H01 iff JS1/ 0

Theorem .1.3. For testing H 1 against H1 . the test 0 is the

uniformly most powerful invariant. Also 0 is a maximum test and is most

stringent.

Proof. See proof of Proposition 1 of Eaton (1967).

8.2. Unbiasedness of the modified LRT for [IlI= 2I2 Let x,

% Np(PlE 1 ), i=l,...,N 1  and y. Np( 2,E2 ), j=l,...,N 2  denote two

independent random samples from two independent multivariate normal popula-

tions. For testing H0 2 :jEl/p I2l I P  (or equivalently [Zl1 IZ2 )

against H12 : IE 1 Il/ P 0 I2 I p , the critical region of LRT is given by,

from (3.2.1), s s'Np2 2 /

(8.2.1) W (S1 ' 2)" s2 < c' constant
2+S 2 1 (N +N2)P/2 ( I aN

[N1 +N2 J

where s p  ISil , if1,2 are the sample sums of products matrices

for X and Y respectively.

Theorem 8.2.1. The modified LRT for H02 IEI- I 21 against

H1 2 : EZ1 1 0 IE21 obtained by replacing Ni by ni - Ni-, 11,2 in

(8.2.1) is unbiased.
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Proof. As in Section 8.1, let S I {E:(EI,E 2 ):IE 1 I - IE2 1;EI,E 2P-d.}

and S - { :(zIz2):IEll OlE21;1l,2P d.1 . Then, S0a SI= .. To prove

Th. 8.2.1 it suffices to show that for any ieS o, say go, and for any

Z.,sayZ

p(WjHo2, o) - p(WIH 12' 1 ) < 0

Consider any i- (7IZ 2

Without loss of generality, we can take E = I and Z = e , the diagonal

21

matrix with diagonal elements ,...,e p

P(wjl 2 ) = nP CnP (S,$) ~(n l -p-l)/2 (n 2 -P-l)/2
(s 1,S2)S2

-nl/2,, exp -1 tr (6-iSl+S2) dS dS2

t an-p-l)/2 (n2-P-l)/2
C cn2p lull u 21 2

]l -l / 2 expl -  tr(6- I +U2)U1dU dU2

b f (' U 2 1(n 2-P-1) /2  ,l/2 1(6-1+U2) I-n/2 dU 2

where S1 Ulf $2= . with Ul/ a symmetric matrix such

that U1  Ul /2UIl / 2  ndb- cnl c Cn,/cn p n-nn 2 .Tei

Jacobian of the transformation (S 1 ,S 2 ) (U1 ,U 2 ) is given by
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D(SlquS2) I  j 1 (p+1) /2

Put V - v/ 2 V 2 . Let w* be the set of all pxp positive definite

matrices V such that (1,0- /2 V -/)e w , and w be the set of all

pXp positive definite symmetric matrices V such that (I,V) w . Then,

P( wIH0 2 ) - P(wIH 12) bIf - *}IV I(I+V)-n/2dv

= n2n/2n/

IV 2 (I+V) I- n / 2 Iv - ( p+ l ) / 2

Now consider the following.

Lemma. If S and S2 are two positive definite matrices of the

same dimension, pxp , then

{lSII1/P+Is211/p}p < ISI+S21

Proof. Since S and S2 are two p.d. matrices, there exists a

nonsingular matrix M such that MSIM' = I and MS 2M' - A - diagonal

) where 6 > 0, i=l,...,p are the characteristic roots of

S2SII. To prove the lemma, it is enough to show

'Professor Olkin has pointed out that this can be proven alternatively

through the concavity of ISt11 p.
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(3) {IMS 1 M'J1p+IMS2 K J,/P1P IMS1 M'+MS 2 MWI

i.e. {IIIl"P +JI PI < p I+l

i.e. {1+ IT 6 1 } < 11 (1+6 1)

which is true by Holder's Inequality. Hence the lemma.

P(WJH 02  - (wlH 12  < bc'{ f } vI(p~')' 2dV

=bc'{ f jV(p+l)/2dV- 0

since

(n -P-1)/2

and for any subset w' of W

lW VI (n 2 -P-1)/ 2 1 I+V)J-n/2 dV <f IVI(n 2 P1)/2[( 1 /p )P] n2d

(by the Lemma)

ca fIV ()2V< QED
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9. Remarks. As with any multidimensional measure, the SGV cannot

be expected to be the unique measure best for all situations of multi-

dimensional scatter. However, if we are interested in 'overall' scatter

and where magnitude of individual variances separately are not of great con-

cern, the SGV can be expected to perform adequately. Wilks (1967) gives an

expository account of GV as a measure of multidimensional scatter from

geometrical standpoint.

This paper suggests several topics for future research. Admissibility

of the LRTs may be studied. Also, alternative test procedures to LRTs, e.g.,

by the Union-Intersection method will be interesting. Sequential and non-

parametric test procedures for SGVs may provide further insights into the

problem. The case of one sided alternatives and singular dispersion matrices

seem to be of great practical importance and interest. Finally, one can

explore situations where SGVs may not be adequate and for such situations

provide adequate measures and tests for multidimensional scatter.
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